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The problem of biserial correlation arises waen one is sampling from

a bivariate normal population in which one of the variables has been dicho-

tomized, giving rise to only two observable values, say 0 and 1, and one

wishes to use this dichotomized sample to estimate, or test hypotheses con-

cerning the correlation coefficient P of the original bivariate normal dis-

tribution. P is sometimes given the name biserial correlation coefficient.

This name reflects the former confusion between sample statistics and popu-

lation parameters, referring of course to the fact that a sample drawn from

the observable bivariate population just described may be thought of as two

separate series of observations, those in which the dichotomized variable

has the value 0 and those in which it has the value 1. It is apparent that

the numbers of observations in the two series are dependent binomial random

variables whose su is the sample size.

The term biserial correlation was introduced in 1909 by Karl Pearson

[6), who was the first to perceive the statistical importance of this par-

ticular type of problem. He proposed as an estimator the sample biserial

correlation coefficient. The asymptotic variance of this estimator was de-

rived in 1913 by Soper [8]. Since that time, with the exception of certain

references to discriminatory analysis (see a(3), in which the use of the

sample biserial correlation coefficient goes unquestioned, no results of a

mathematical nature were contributed until a recent paper by Maritz 151.
Much literature exists, however, on the subject of how best to compute Pear-

son's coefficient. In this comection the reader should see DuBois s2J,

DMUnp (3)]* and IRoyW( L7j.
The problem of biserial correlation occurs quite often in psychological

work, especially in that branch of the subject known as Test Construction

and Validation. In connection with an objective test one may be intrested

in obtaining a measure of the strength of the relation between the ability
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to answer correctly a particular item in the test and ability to perform at

some task, or in testing hypotheEes concerning the strength of this relation.

Such a measure, together with a random sample of individuals, selected of

course from the population for uich inferences are to be drawn, helps to

determine whether or not the given item should be included in the test. In

order to put the problem in the proper form certain assumptions must be made.

Suppo3e that the ability to answer the test item correctly can be represented

numerically by a random variable with a normal probability distribution,

which however cannot be observed due to the restrictions of the test; in par-

ticular, suppose that observations an this ability take the value 0 if the

question is answered incorrectly, and the value 2 if the question is answered

correctly. If in addition to the underlying normal distribution just postu-

lated, we assume that the abilitv to perform at the task is also measurable

with a normal distribution, and that the two normal variables have correlation

coefficient P9 then we have the problem of biserial correlation. 1 A simple

example would occur when a true-false question is included &nong the questions

in a preliminary college aptitude test and then a follow-up study is conducted

on the sampled students in order to observe their final grade point average

upon graduation four years later. In this case P would represent the degree

of association between ability to answer the question correctly and ability

in school, and would be estimated by some function of the paired observations

on the sample students. It should be noted that in such a case acceptable

test items are those for which e is judged to be near i. We shall refer

to this example several times in the sequel in order to illustrate certain points.

1 ?earson's original formilation was less restrictive than that given here.

Anticipating the fact that problems in estimation and testing hypotheses

will require assumptions of normality, we make these assumptions at the

outset.



In the above example it is assumed that there exists an underlying

distribution of ability to answer the true-false question correctly, and

that in addition this distribution is normal. Since it is not possible

to observe the underlying distribution, it also is not possible to test

the assumption of underlying normality, but only that the underlying dis-

tribution is normal given that there is an underlying continuous distri-

bution. Therefore, in many situations in which biserial correlation is

appealed to, the assumptions involved are open to serious attack, an

attack for which there is no adequate statistical defense.

If one wishes, he may give up the assumption of underlying normality

and assume instead that the observed bivariate d1stribution is that of a

discrete random variable which takes the values 0 and 1, and a continuous

random variable with the property that its conditional distribution be

no.mmal for each given value of the discrete variable. With this formu-

lation good results may be obtained if one is willing to make the assump-

tion that the two normal conditional distributions have the same variance.

The problem of estimating or testing hypotheses concerning P under this

set of conditions is known as the problem of point-biserial correlation

and is treated in reference [0. Some of the results obtained there are

similar to those of the present paper. Note that this set of conditions

may be tested statistically by testing the normality of the conditional

distributions. Moreover, no confusion between the two models would occur,

since in the case of biserial correlation, it is easily shown to be im-

possible for the conditional distributions to be normal. ln the problem of

estimating the correlation between ability to answer a test item correctly

and ability in school# the use of point-biserial correlation recuires that

(i) for each student who answers the test item correctly, the ccnditional

distribution of his grade-point average be normal with, say, mean

/K



and variance C" 2l and that (i) for each student who answers the test item

incorrectly, the conditional distribution of his grade-point average be

normal with mean ^, and variance c-2. Note that it is necessary for the

variability of grade-point average to be the same for the two groups of

students.

Professor Harold Hotelling vealised some years ago that the existing

methods for dealing with the pro lem of biserial correlation were far from

satisfactory, and suggested to tie author that the whole situation be recon-

sidered. The results of this ezatination are contained in the present paper.

Section 2 contains a list ot most of the notation which has been adopted,

and Section 3 deals with the mathematical model.

In Section 4 the question of maxium likelihood is treated. The

maximum likelihood estimator is .3hown to be asymptotically normal and
A

asymptotically efficient. The a 3ymptotic variances for P and w , the

maximum likelihood estimators of the correlation P and point of dichotomy

40, are found by the usual meth3d which employs the information matrix and

side-steps the solution of the likelihood equations. A valuable contribution

to the theory of biserial correlation was made by Maritz (53. Comments are

made on his work, and on a paper of Tocher CWr, in the early part of Section 4.

An evaluation of r , the 3ample biserial correlation coefficient, is

given in detail in Section 5. It is shown that r* has asymptotic efficiency

for estimating e which is 1 wh.n ( 0, but which approaches ( when I '

approaches 1. Consistency of r was shown by Karl Pearson [6]. The well-

known fact that r may be greater than 1 is pointed out and some notion of

the magnitude of r* is obtainol by a consideration of the product moment

correlation coefficient r. Asymptotic normality of re is verified by the

use of a theorem of Cramer. The asymptotic standard deviation of x is

tabulated in Table I at the end if the paper. One interesting point in



Section 5 is an intuitively appealing fact which the author diacovered is

tiniversally asmed, but apparently was never proved- naaely, Uia-- the

nsA-ptotic variance of r* is a ainimrnm at w=-C f'or each ftixod 10 . A

proof is given for this result. For the case w -;,O an approimate variance

stabilising transformatIon is derLved. Calculations pertaining to this trans-

formation may be carried out by using Table VB of Fisher LZI for the function

tanh- (r). This result should prove useful in many situations. Section5

concludes with a discussion of the preceding results and of the fea~sibility

of using i* to test the hypotchesis Hs P/'Po when leol is smail.

Section 6 is devoted to a discussion of an iterative method t~f solution

for the likelih,., ;- juations. Tbe method in essentially Newton'sa method for

two variables, tho fr-1culated valaes (A*, r * being used to start the iter-

ation. The comaptations are not really prohibitive, consideri~ng the import-

ance of the problem, and are to a certain extent organizable for punched-

cards methods. Ax. example is given with all of the calculatio:w illustrated.

The data consist of a sample of 2) observations taken from an ar-tificially

constructed bivar~ce nozual population with .707.

Values of Mills' ratio,

2

are required for the ftaulations * For purposes here wet shall need a table I
Wi 'A- giveis tP(x) for x ranging from -3 to 43 in a-teps of .01, so that

no trasformation or extensive irterpolation is required, since it will be

necessary to obti n vrjuee of 16 for a given problem in which a sample of

n has been takeu. Accoridinglyt, we include Table II at the end of the paper.

Interpolation by inspection in Ta ble Ill should be quite satisfactory,

The subject of biserial correlation Is generally given a light treat-

amt In texts on psychological statistics, centering on the unboundedness
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of r and the questionable character of the assumption of underlying nor-

mality for the dichotomized variable. A notable exception is the recent book

by Walker and L.,v [2], which has a more complete treatment or the subject.

A few of the results contained Ii the present paper are referred to, and illu-

strated in .

2. Nat

To eliminate the distractio:i of searching through the text, we shall

list here most of the symbols ant notational devices used.

(X,¥) 0 2, •-', the bivariate

2w/i normal density

(x) 1 .. 2 the normal density

P(x) f A (t)dt, q(x 1 - p(Xi.
X

(N) - , Mius, ratio.
p(x)

= ,(9 V(x,y)dv

(X,0 h'(.y)dy

X the umdichotamised normal random variable.

I the dichotomized normal random variable.
'A% the point of diohotomy of Y, measured in standard units.

Z the discrete random variable induced by the dichotomisation of !.
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f~xs the Joint density of the random variables X aud Z.

f(XY) the correlation coefficient of the random variables X and Y.

the maximum likelihood estimator of P.

the sample biserial correlation coefficient.

r' the ordinary sample correlation coefficient based on the

sample (ZiZ±) # £ = 12,,n

'ofjW~ ) the asymptotic variance of r*.

gu(r'tj~j) the asymptotic efficiency of r' for estimating (0

X(/L,02 )" normal random variable wilh mean 4Cand variance .

(qC-';2 , 2; ") bivariate norma' random vector with means ~9

variances w- t- #.2  and correlation 0

OF) canotes the fact that Un is asymptotically normal with

mean t-and variance -2

Let (X,i).?X (p, iVr 2 , v2~;f) and W~ be any fixed constant. Now let

Z be a Bernoulli randam variable defined as follovs:

(3.1) Z - if Wand Z =O if Z".

Obviouslys

P(z - 1) fAVLzj dy z=p(u"I, P(Z -0) qu)

Consider e sample of n independent random vectors (X1,Z1)t (X25Z2),...,

(XnpZn) - The problM Of bisrial correlation consists in finding a suitable

function or (X,~ i w l,2,...,n, 'with which to estimate P

Karl Pearson (6) introduced the estimator r* (mvhis.-4al rs), which we

express in the following formn
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(3.2) 
rJz

fr~ (Z~I)#~~(T) (T)

where is the product moment correlation coefficient of (Xi,Zi), and

T is the solut 4 on of the equation
e0

(3.3) I(y) dy

T

r* Vill be discussed completely in Section 5. For the present we shall

merely state the asymptotic variance obtained by Soper We]:

(3-4) V~* 2 J ,(Pl

where the functions p, q, and N all have argument Wo

-n z*) -f.i (r*).,,e)

is given in Table I at the end of the paper. In view of synetry about the

values =0 ad p )ZI, the tabulation is given gor 930 to 1

in the steps of 1.0, and for p = .05 to .50 in steps of .05.

SineD the random variable Z takes te value 0 or ., the joint density

-of (X,Z) can be written

•(.5) f(x,a) z=f(x,1) . (1-S)f(x,O),

where

(3.6) f(xC)- f (x,,y)dy,, f(x,j)=jr( x, ,)dy,

with 9 (xy) denoting the density of e/1 ,piJ, 1.2;p). Sections 4 and 6

are dmited to a discussion of the likelihood function,"

(..) L = t (l-T5-)f(xso) +.Xif(xi,1)) •
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It may be seen that L is actually irependent of JO and ?, since a

change of variable y' - (y-i)/r in the integrals of f(x,O) and f(x,l)

removes ) ando V. Hence, in all further work we shall set 0;O and

1.

The main stumbling block is the existence of the nuisance parameters

/A and 2 . The 4 likelihood equations in the variables oe /', r2 are not

hard to write down, but the algebraic difficulties involved in the deviation

of asymptotic variances and covariances, and the numerical difficulties

involved in solving the equations by an iterative method, prove far too pro-

hibitive. It seems intuitively clear that were we able to solve the 4 likeli-

hood equations for we would find that P

1, S2... sn) is invariant under aay transformation of the form xi axitb.

This, of course, does not give us the right to set /ka 0 and a.2  1, and

then expect to find the correct maximum likelihood estimators for/and 2.

The following course of action has been adopted as a way outs set 1 0 and

2 = 1. Then solve the 2 likelihood equations, and in the resulting solution

replace xi  by

4 .1 ) 
-- { Zt) 2

If we know the values of A and 2, the problem is naturally avoided by an

immediate transformation of the original data. In all future work we shall

assume / O and -2 M 1. ~(xy) now becomes Y (x,y), and the likelihood

function takes the form

(4.2) L Q'J1  ( ~ a~ '(x 1 ,) ,.( 1 -si) (x±,41

i• I-
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We shall pause at this point to discuss the work of Iaritz f5j. Using

Probit Analysis, together with a result of Tocher e, h has given a very

nice approximation scheme for the solution of the likelihood equations. In

what follows we shall give a short outline of his method in terms of the

notation of the present paper.

Let (In)X'(oo;l,(l-.p)';p). In iew of the fact that the likeli-

hood equations are invariant under a change of / or r 2, this formu-

lation is equivalent to ours. Now introduce a grouping of the observations

fxi;i =6 12,...nl with a set of k cells of equal width. Denote this group-

ing by

{IJ k ;j ul,2poepk].

Denote the collection of midpoints of these cells by

{lj,kiJ - ,2,...,kJ.

Let

(4 3) PJ,k " F(XI,k), Tr,k ' P(z -W 1x ,k)

Now let Nj,k be the number of observations in the sampletXi;i 1,2...enj

which fall in Ij.k. and Mj k be the number among the Nijk for which

the corresponding Z observation is 1. Thus, Nj1; j  1 1,2,...,kj have a

multinomial distribution with parameters __PJ,k;J 1..2p... kj. The condit-

ional distribution of itj,k;J- 1$,2,...,kJ given Nk nj k  is the pro-

duct of k binomial distributions.

Maritz now assmmes that the observations" X; i -,12... ,n are concen-

trated at their rospective cell mid points. Since the marginal distribution

of the X is independent of w and j the part of the likelihood function P !3



which depends on e and ' will be the conditi.onal distribution of the Mk

given Njk = nj,k which has parameters 1? We are thus ultimately led

A A
to two simultaneous equations for W and 1 which contain terms

These equations are then transformed slightly and probit analysis is used for

the solution.

Presumably, as the grouping becomes finer, the estimates

W..,mk,k) a 'A(ml,k*M2,kP..mk,k)' together with the asymp-

totic variances cT, and a, , will approach the correct values for the

original problem. A proof of this result must depend on a close examination

of the limiting processes involved. The situation which arises may be described

as follows. We assume that the grouping becomes finer and we wish to assert

tio things:

ijk;J ,,.,k - PCZ -illx- =i),i -1,2,...,ln

(4.5)

in the sense of probability.

The meaning of (4.5) is, then, that as k and a both become large the cell width

must become mall, but in such a way that each cell still contains suffici-

ently many observations for 5,k to be a valid approximation of MjqJ,k.

This result does indeed appear quite plausible, but a detailed proof would be

lengtby.

Instead of attem7 ing a discussion of the above point, we offer an alter-

native derivation of the asymptotic variances of and 4 in this section,

and in Section 6 and iterative scheme for obtaining (P ) which, while more

time consuming than that of arits, does not require any grouping. It should

be noted here that Tocher' a exact method (pp. 9-11, [1lJ), also known as the
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*scoring" method, doesn't help ir- this case, owinE to the diff4culty in

obtaining the expectations of the second partial der'.vatives of L. Again,

the plausibility of Maritz' scheme should be emphasize,%

Many results have been obtained concerning the ksymtotic normality

and asymptotic efficiency of maxi3um likelihood estimators. In each case

the parametric family of probability distributions is subjtat to certain

regularity conditions, The density of (XZ) is f(xs). We VIhAll not dwell

hre at any length on the regularity conditions, but shall mere4-v remark

that the regularity conditions given by Cramer (Chap. 33.3, ) my be

easily verified, since f(x,O) and f(x,l) are both integrals of bivariate nor-

mal densitiee. Consequently, w,1 will be asymptoticall ' normal, and

asymptotically efficient estimators for W and f respectively. Asymptotic

variances of the maximum likelihood estimators may be found by az inversion

of th2 inverse matrix without actually solving the likelihood equatio s.

We now use this technique.

Tr:em 1.

The asymptotic varianc: of P is given by

(j-xg(xLP,f)dx)
2

(4.6) V~ a_______

-~~ fgxwjf,)dx ~
vhere

ee q at #(rZ"= '

log L log~s 2 1(xiscO) (15j Y(xi,~

We will need the quantities



Letting- y2 refer to any of the three second order partial operators, we

have the fundamental relation

(4..7) E(blog L} = nqE0 .(bOlog I (X~W)} * np3t flog F,(1,"448

where Eo means expectation with respect to the conditional density of X

-given Y < 4, and E1 means expectation with respect to the conditional

density of X given Y A 6j. The conditional densities are

(4.8) NV (x)IY <W) y) J(xYdy
po

For each of the possible operators b 2 the calculation of (4.7) pro-

codes in about the same way. As an illustration, we shall compute

Ef5LJ

For a random variable U with density h(u;S), it is well known that

(24.0 h() 2  U O)

provided the expectations exist and differentiation twice under the expec-

tation sign is permissible. It in easily seen that

- (x).

Consider the first term in the right member of (4.7). From the definition

of Eo and (4.8), together with (4.10), we have the result

I1 nqE -a we Jhow dta.

Inasimilar manner we show that



(4.13) n'itj -21 f .2 dx.

Hence,, combining (4.12) and (4.13), we get

lot 2 dx.

Uring the relations,

ly~xw~j2 A(X)2AfL )2

(x,-W) X(x) f X(y)dy,

w have from (4.14) and the definition of g(x,*f)

E , b21o r% T,

(415) y og(x )d

similarly,
5- -W _ F,

(4.16) K ,R (pJ) 2 g(x,4f')dxq

(,4.17) R J=21 LL-j j (x-(v) g(x,.Wr)dx.

Forming the 2 x 2 information matrix

and observing that IAI is non-vanishing because of the Schwars inequality,

we finally obtain



VP, f=6 22 fy~ { gdx - cL- ) J. 15

-~ Jgdx

Liz& o%*fxgciz

where X- is the ijt element of the 1nverse matrix. A , which proves

Theorem I .Expressions (,4.18) coincide with the previously mentioned

results of kMaritz.

5. The jglt. ofr*

We sallI now present a series of results concerning x*2 whJich will be

followed by a general discussion of its value.

A little later we will need E(ZZ). Since, it is not difficult to

obtain# we will give the expression for the general moment a( K E(]KZ) .

Theorem :

t h er m o e n o fe d y ,

where a is tejhmmnofherandom variable .yj(O,1).

Iro Using the definition of El and (/#.9), we obtain

B(ZKZ) := 1E(XK) - f ,R''et(x,y)dvdx.

Make the transformation t, (x-fy) 11T-2 The above then reduces to

i tF . Y)K _.I 1 - 2. dydt.
-f ~4I



" g-_i16 r
U sing a binomial expansion and integrating with respect to t, we have

Theorem II. The integrals contained in Theorem II may be evaluated by a

recursion relation. Let

r Y2
b 2) I - 2. dy.

Then,

b()- ( V-1) hV_2 ((') t bl (w).

We now easily arrive at

(5.1) b(w) = p(.)), b1(w) (w).

whence

(5.2) v 0' P;N(w' 12 z p(j) . )2.

The relation between e(XY) and e(XZ) ts given by

2Proofs Let EX A - 0 and V(X) w * r2 o 1. Then,
?(X,z) (E) [v(z)] 4  - (E(z) (pq)4 . From ,5.2), p A 1),

which proves the theorem.

It follows from the original definition of biserial correlatioN as given

by Pearson [6), that r* is consistent. This fact is also an immediate con-

sequence of relation (3.2) between r* and rs r-)p(XZ) in probability

as n --->Co. Th S,

an r by h) (11 Z)-92 in robabilitv

and hence by Theorem III, r -((,) in pro-.ability.

-7777-7 1
7U
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With respect to the magnitude of r , it is well known that/ lca
be greater than 1. Something of' the nature of this phenomenon can be under-

stood by looking at r. In order to prov,3 a resu~lt concerning the magnitude of

of r*, we shall need a result from reference r9l.

Trem U (LTomm 2 of £9]):t

p(x) q(x) >,. A2 (C), +

Now we haveJ

Theorem Y1:

FrafL Rewriting (3.2) as

we have, in view of the definition of T.

r *an r
A(T)

Theorem IV applies for any T .so Theorem V is proved. As a consequence of

Theorem V,, we see that

~ ~1 according as r A
< -1<-f

Asymptotic normality of rl*, which will be needed later in this section

is a trivial consequence of a theorem of Cramere

f2 I

777 7 r



In expression J(3.2V? ) ) Atr (T) is seen to be a continuous' ucto

of £ Thuss, r4 is a continuous function of the sample mean s I , i, 17ZE.

Applying Cramser ' theorem (p. 366 of (~Jwe have asymptotic normality with

the "asyptotic variance (0.4) calculated by Soper 181..

We shall now present two results which are more important than those just

preceding. They concern the asymptotic,, or large-saple, efficiency of r*.

Theo= 3Uz. r* is an asymptotically most efficient estimator of 10when

0.0

Pr~ In view of Theorem VI on asymptotic normality, we have a right to

inquire about the asymptotic efficiency of zr*, which will be denoted by

A

It may be seen from Theorem I. (4.6),,that

Now, from (3.4) we observe that (5j.3) coincides with V(r*juw,O). The con-

clusion follows from the definition of an asymptotically most efficient esti-

mator.

Thggrgm is an asymptoticaLly Jgjjt efficient estimator of -~when

groa At application of Theorem IV shows that
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Hence, recalling the definition of g(xW,e) in Theorem I, we see that

a11 integrals of the forma f 1Kg(xtaf)dx exist. Schwarz* inequality

shows that V is sauch that the terms in braces is non-vanishing.

Thu, V4f 14f) -jo 0 as I I 1-4 1. From the fact V(r*IwC) -;0.

as I. spe casle that (xu L&qe) -*0.

The special case 4 = 0 has interesting features which All appear

in Theorems X and XI. First we shall need another result from referencer[lJ

Theorm (Lemma1iof [9J)
" 1-2p(x)}/ (x) -xp(x) q(x) 0 9 x 0 .

9S

1heoram I.-

The asymptbtic variance of r* has its minimium for each at 0 0.,"

"Prof: 'We must show

• v0r*l ,) 1- vrfl0,r)

for each i in view of symmetry, it will be sufficient to show thh -Or

k'/o0 Let .

0.0

9(w) 1 t p- )l ( ). -ep(w)q(W) # h(: 2 : q -

From this point until the end of the proof, we shall omit whenever it,

appears as an argument of any function. *From reference e] have

1 . 1

* j1
0l
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'w 2X - PQ9gm= 4 J (2q.1. j, 6() (0 OPg9(0). O,

h' " (lu2q) + TrA 2, h"" A _(,r-2m-WJ2) a)

h(O) - h(.O) - h'(o) M, h (0) 70.

Accordingly, we have A -c gA' 2 , B hAr 2 + 712, with A : 0,

B . V/2, both equalites holding at o=0& 4le, relation V(M Wj)

V(rejo () for al C may be writtene 2 A t b 0 77/2 for all ( . Lince

A 4 0, this last expression is impliecd t. A + e . 7',* , h2C.h In turn

is equivalent to h ;P k)g. Thus, we must stidlu k .r;i -(i- > 0.

k 20iq(t-q) -2(2q-IJA +I w&(rr-2) \ 2 ,

(5.4.) kO 2q(l-q)- A2 j6 --'w +, (2w-., ],

k(.\) =k(JO) = k'(0) 00, k" (0) = i. - 34 "

Ve shall show Lhat there exists no y such such k'(y, - ', k(y) < 0.

"Suppose such a y does exist. Then,

_ (5.5) 2(2q-1) -- 2q(1--q) + (lr-2)y \ 2 ,

q(l-q)(l~y2) - 1rA2/2 - y(2q-l))i -r 0.

Substituting the right member of the first expression into the second, we

have 2q(l-q) < X 2f r+ (lr 2) y2 ). Thus, k" (y) A 12 1:r6 -(V,--2)A.

A negative maximum must, from (5.4), be followed by a negative minimum.

Hence, from the above relation in k0(y), there exist no extrema which

oxceed { (2r-6)/(r-2)j*. Assuming there is a negative extremum of k, then

there must be a negatve miniaum in (0,1). Let y be this m.inimum point.

Then ko(y) >0, or from (54, 2q(3.q) ;X 2 16._... 121r') y9J. .

Sabtituting the volve of 2q(l.q) obtained fmr the first equation in (5.5),

we reach (2q l) - ,[2. (iT-) y2 > o.
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The left member vanishes at y = 
0 and has a negative derivative 

for 0 4 2 1 .

Therefore, there is no negative minimum in (0,1), and from the previous

argument k ?, O, which completes the proof.

Since for any fixed/, r* is a better estimate when to=0, it will be

useful to have something simpler in the way of an asymptotic distribution of

r* than that contained in Theorem VI. We are therefore led to

Tam= Jut
When W =0, we have to a close approximation

v tano b - ev X, - (tabli- (- '

Dropping the last term and solving the equation

g' (x) ( - 12)

we have g(x) =(2/) taua-1 (23//-5). It is known that

/fifg(r*) - g,)j A €ol),

so the theorem is proved.

Discussion of Results Concerning r*

In looking over Theorems V, VI, VII, VIII, X, and nI, several facts

stand out. Firet, even though r is consistent and asymptotically normal,

it is still inadequate for estimating t because of its possible magnitude

and its lack of large sample efficiency for large values of if. In the

case of testing they hypothesis Hta f= the first defect Is iioof so

much consequence. Even in a problem of estimation, one can always operate

under the rules When K1 estimate P by r*, when * 1 .esti mate P= 1,

and when r*- -1 estimate P= -1. The gross defect is lack of efficiency.
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In practically all applications it is of more interest to detect large

values Of I than sall values. In Just such cases r* is a "worst* esti-

mator. On the other hand, again speaking in large sample terms, when P a 0,

re is a "best" estimator. Hence, if we base a test of Ho Po- on 1*, good
0

results should be achieved when I is small. It is then reconnended

that r* be used for one and only one purpose, to test Hi P I Pa when I PI

is small. If in addition the assumption 1 = 0 is tenable, then the vari-

ance stabilizing transformation of Theorem nI may be used, calculations being

performed with Table VB of Fisher (p.210, [4]). In such a case advantages

of the type Jiscussed by Fisher (pp. 197-204, [4]) will accrue. IFi c-r

is given in fable I.

In the case of the problem of estimating the value of a particular test

item for predicting student performance, W a 0 would occur when the question

is of such difficulty that the average student would have probability .50

of answering it correctly. We could then use re and the variance stabilising

transformation of Theorem II to test the null hypothesis Ho 0, which is

the hypothesis that the question doesn't add anything to the predictive value

of the test. The acceptance of hypothesis H doesn' t mean, of course, that

the question should be omitted. It is well known that such questions have

at times a useful purpose. Note that in view of the above discussion it

would be wrong to use r* to obtain confidence limits for P . Also note that

according to Theorem X a question for which w a 0 is a desirable one to

have.

6. Soluton otLtat "MUbagi Euataa

In what follows all summations will be over the domai i l,2,...,n.

From (4.2) it may be eeno that the likelihood equations are

(6.1) (. 0

- - . ' ". 'd " ,L '. T 
' ' ' ' ' ' '

- 0 . ..
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where S refers to differentiation with respect to woe . hlecall

from (4.31) that,

( 6 . 2 ) ' ' ( x i , , ) , . i . -

Also,

(6.3) xL ) W _ 0, W) _ x_-__

C.rhxi', )) . (xi, W) (xi,-

(l- , 2)

by tie use of (6.2) and (6.3) equations (6.1) cen be written as

2(xi- FO) (2zi-1) #~2i-)$~~ 40-ei 0,

(6.4)

Z _ ( 2 z -1 ) ) ,'i - 1 ) - = o .

Now introduce the notation

(6.5) 2i-Ia, n- ( j_-)(1e 2 )- , ',

Rewriting (6.4) again, in the new notation, we have

(6.6) X =o, z o.

7Z-ii



Easy differentiation given <q'x) (x) ~t(x) - x]. N.~wton' a

method in two variables gives the following equations in 4 w and A (' ,

where LA0='))J- (~I-' , and(' 1  being initial guesiseas

(6.7)

Lot be the determinant of the coefficients. The method of solution

will then be the following:

Mt o 9 Solutiog

i) Compute (0.o*, r*) from the sample (zi, zj)j, i - 2,...,nt

where r* is tk.e sample biserial correlation coefficient and 0 * is the

solution of the equation p( ) . Now, let Ci -' * and

'z = ,.9o when r*j < 1

.90 when r* 1
-.0 when zA -1.

ii) Compute Sj,p 3 lj /ip Sjis~J gioi Ail Aixip Aixi 2  for 1 l,2,..,n,

where S e, Oil A 1  are defined in (6.5), and Table II is used to

obtain numerical values of the 9 i"

pj
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iii) Evaluate the three determinants

Aii_ A Aixi

(~2)2
- E. A~~Ax, Aix i  A x 2 , l )

--- .: e1w'1  Ai - " A,.,
/.. ( -- i±- i'

1

;, Ax, (21w. ixi, T- Ai: 2

iv) Obtain w, from (040',p) and (' p1), and repeat

the process using w = 2' P 2 in place of &JI and

The rule given in i) is somewhat arbi.trary, but is believed to be a

good rule of thumb. The longest stage in the scheme outlined above is the

determination of i l from Table II.

We shall now ,resent an illustration of the method. In order to have

a good vantage point for observing the way the calculations run, we select

a random sample from O(,o;i,i;1//2). A table of random numbers from

such a population is not available directly, but can be constructed from a

table of gandom mbere from llr0,i) as follows: Let



267,

U 1,(, V w ,Y( 0,1) w=~.50.

now,, let

Now dichotomie Y byr introducing the Z variables

Z w 1 if! Y .50 and Z sO: if Y ( .50.

The computing scheme for 20 pairs of observations follows

;77.
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A second iteration resulted in W3 or 0.251p f 3  0.489. Since p

remained unchanged in the third place, the results were not included. Recall

that the true value of 1 is .707. On the basis of our sample of 20,
A
P = .489 is the best we can do. However, by using the iterative scheme

instead of r* we removed 27 of the error.

7. S -
The problem of biserial correlation ii. examined. An attempt is made

to touch upon all aspects of the problem, without sacrificing mathematical

rigor, and to describe the pertinent literature in its proper setting.

Particular attention is paid to the use of maximum likelihood, and to the

asymptotic efficiency of the sample biserial correlation coefficient.

Results may be sznnarised as follows.

(1) The likelihood equations for 0 , the point of dichotomy, and P,
the population correlation coefficient, are obtained.

A method for their solution is described and illustrated by an example.

Detailed calculations are given.

(2) Asyaptotic variances are derived for the maximum likelihood esti-
0% A

mators, W and ", and are found to coincide with expressions given by

Narita [5J.

(3) The sample biserial correlation coefficient (bisorial r) is shown

to be appropriate and very useful for certain problems in tusting bpotheses,

but essentially worthless in other situations. Several results are given

In reference to the limiting distribution and asjmptotic efficiency of this

coefficient.

(4) Tables are given for the asyaptotic standard deviation of the

sample biserial correlation coefficient and for Hills' ratio, tm latter

being useful in solving the likelihood equations.

(5) Practical suggestions are offered, for application of the results

of the Paper, wherever possible.
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TABLE I

The Asyaptotic Standard Deviation of'? (biserial r)

as a Fumction of p and/O.

All values must be divided by VV

p or 1-p

005 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 4,466 2.922 2.345 2.041 1.837 1.737 1.658 1.608 ..5W0 1.571

.10 2.104 1.699 1.521 1-A19 1.353i 1.308 1.278 1.258 1.247 1.243

.20 2.077 1.668 1.491 1.389 1.323 1.279 1.248 1.228 1.217 1.213

.30 2.033 1.6M 1. 1.339 1.273 1.229 1.198 1.179 11.1671.163

.40 1.973. 1.%3 1.370 1.269 1.2D3 1.159 1 .1 1.109 1.097 1.093
-I---1-0- - - -0-8 -10.50 1.093 1.449 1.279 1.179 1.114 1.069 1.038 101100104

-091 -. 9 - ----- -.60 11.799 1.3331 1.167 1.069 1 .004 0.960 0.930 .10088 .9

.70 1.691 1.194 1.03 0.939 0.875 o.831 0.8010.781 0.769 0.766

.-o 1.691 - -- - -2 -

.80 1.5 1.0311 0.881 0.789 0.72710.683 0.653 0.63210.620 0.616

.90 1.4M8 0.842 0.701 0.619 0.559 0.5u7 0.46 0.465 o.,43 0.449

[.00 1.302 0.616 0.503 0.429 0.374 0.335 0.304 0.283 0.270 0.266

- - -- - - - -
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TABLE II

Millof Ratlol 2

-X (z) -z 4(3)
.00 .79788 .14 .561W8
.01 .79152 .41 .55649
.02 .78519 .42 .55112
.03 .77887 .43 .54578
.04 .77259 . .54047
.05 .76632 .45 .53520
.06 .76008 .46 .5299M3
.07 .75387 .47 .5U71
.08 .74767 .48 .51948
.09 .74148 .49 .51/3i

.10 .73532 .50 .50917
.11 .72920 .51 .50404
.12 .72309 .52 .49893
.13 .71701 .53 •49387
.14 .710M 154 .48883
.15 .70491 .55 .48380
.16 .69890 .56 .47883
.17 .69291 .57 .47386
.18 .68694 .58 .46893
.19 .68099 .59 .4602

.20 .67507 .60 .45914

.21 .66917 .61 .45429
.22 .66331 .62 .44947
.23 .65747 .63 .44468
.24 .65165 .64 .43992
.25 .64584 .65 .43518
.26 .64006 .66 .43047
.27 .63431 .67 .4258
.28 .62860 .68 .42114
.29 .62289 .69 .41652

.30 .61723 .70 .4U192
*.31 .61158 .71 .40736

.32 .60594 .72 .40282

.33 .60035 .73 .39832
•A .59478 .94 .39383
•35 .58923 .75 .38939
.36 .58371 .76 .38496
..37 .5722 .77 .38056
.38 .57274 .78 .37621
.39 .36731 .79 .37186

2.

1!4ills' ratio: #(z)

2 This table is e~dUCed wih the kind Permission of
Professor Z. W. Uirabamu of the Laboratory of Statistical
2eseaob, Umivealit of Wae .gtono
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-x 6(X) -x X
.So .36756 1.30 .18974
.81 .36329 1,.31 .18693
.82 .35904 1.32 .1814
.83 .35%8 1.33 .18138
.84 .35062 1.34 .17866
.85 .34646 1.35 .17595
.86 .34234 1.36 .17328
•.33823 1.37 .17064
.88 .33416 1.38 416803
.89 .33012 1.39 .165

.90 ,32611 1.40 .16288

.91 p32213 1.41 .16035

.92 .31818 1.42 .15784

.94 .31035 1.44 .15292

.95 .30649 1.,45 .15050

.96 .30264 1.46 .181O

.97 .29884 1.47 .14574

.98 .29506 1.48 .14340

.99 .29132 1.49 .14108

1.00 ..2w60 1.50 .13879
1.01 .28391 1.51 .13653
1.02 ,28025 1.52 .13429
1.03 .27662 2.53 .13208
1.04 ,27303 1.54 .12991
1.05 26945 1.55 .L2775
1.06 -6591 1.56 .12562
1.07 .262 1.57 .12351
1.08 .25892 1.58 .12143
1.09 .,25547 1.59 .1938

1.10 .25204 1.60 .U735
1.13. .24866 1.61 .11534
1.12 .24529 1.62 .U338
1.13 .24196 1.63 .11141
1.14 .23865 1.64 .10949
1.15 .23538 1.65 .107581.16 ,.23213 :..66 .10571
1.17 .22891 1.67 .low8
1.18 ,22572 1.68 .10202
1.19 .2Z56 1.69 .10022

1.20 ,,2194 .70 .09844
1.21 .21634 -1.71 .09668
1.22 .21326 1. 72 .09495
1.23 .21023 1.73 .09323
1.24 .20721 1.74 .09155
1.25 .20423 1.75 .08988
1.26 ..20127 1.76 .08824
1.27 .19834 1.77 .o6
1.28 .,19545 1.78 .08502
1.29 .19257 1.79 .0834

- - ---- ----



--x (x) -x (+(x)
1.80 8189 2.30 .028641.81 .08036 2.31 .027971.82 .07885 2.32 .02733
1.83 .07737 2.33 .026691.84 .07591 2.34 .02607
1.85 .0745 2.35 .025461.86 .0730/ 2.36 .024861.87 .07163 2.37 .0241.88 .07025 2.38 .023701.89 .06889 2.39 .02313

1.90 .06756 2.40 .02258
1.91 .06625 2.41 .02204
1.92 .06494 2.42 9021511.93 .06366 2.43 .020991.94 .06240 2."4 .02048
1.95 .06115 2.45 .019981.96 .0594 2.46 .019501.97 .05873 2.47 .019021.98 .05755 2.48 .01854
1.99 .05639 2.49 .01809

2.00 .05525 2.50 o0764
2.01 .05412 2.51 .01719
2.02 .05301 2.52 .016772.03 .05192 2.53 .016342.04 .05085 2.54 .015942.05 .04979 2.55 .015532.06 .048M6 2.56 .015142.07 .04774 2.57 .014752.08 .04674 2.58 .014382.09 .04575 2.59 .01401

2.10 .0478 2.6o .013642.11 .04383 2.61 .01329
2.12 .04290 2.62 .012952.13 .04198 2.63 .012612.14 .04107 2.64 .01
2.15 .040-8 2.64 .01228
2.16 .03932 2.65 .01196
2.17 .03846 2.67 .01,34
2.18 .03761 2.68 .o114
2.19 .03678 2.69 .01075

2.20 .03597 2.70 .010462.21 .03518 2.71 .010172.22 .03439 2.72 .009902.23 .03362 2.73 .009642.24 .03287 2.74 .009382.25 .03213 2.75 .0012.26 .03140 2.75 .00912 K
2.27 .03070 2.76 .0086
2.28 .029992.7 086
2.29 .o29 2.78 .00839

2.79 .00816



2.80 .00794-_____

2.81 .00772
2.82 .00750
2.83 .00729
2.84 .00709
2.85 .00689
2.86 oo669
2.87 .00630
2.88 o00632
2.89 .00614

2.90 .00596
2.91 .00579
2.92 oo0563
2.93 .oo546
2.94 .00531
2.95 .00515
2.96 .00500
2.97 000486
2.98 .00472
2.99 .00458
3.00 .00Ai4
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Ow x OW~x
.00 .79788 .50 1.1410 o
.01 .80426 .51 1.1484
.02 .b1O66 .52 1.1557
.03 .81708 .53 1.1631
.04 .82351 .54 1.1704
.05 .82998 .55 1.1779
.06 .83646 .56 1.1854
.07 .84298 .57 1.1926
.08 .84950 .58 1.2000
.09 .85605 .59 1.2076

.10o .86262 .6) 1.2151

.11 .86923 .61 1.2225

.12 .87582 .62 1.2300

.13 .88246 .63 1.2375

.14 .88909 .64 1.2450

.15 .89577 .65 1.2525

.16 .90246 .66 1.2601

.17 .90916 .67 1.2677

.18 .91589 .68 1.2753
.19 .92266 .69 1.2829

.20 .92941 .70 1.2905

.21 .93621 .71 1.2982

.22 .94300 .72 1.3058

.23 .94984 .73 1.3134

.24 .95668 .74 1.3212

.25 .96357 .75 1.3287

.26 .97043 .76 1.3364
.27 .97734 .77 1.3441
.28 .98427 .78 1.3519
.29 .99119 .79 1.3596

.30 .99816 .80 1.3674
.31 1,00516 .81 1.3751
.32 1,01215 .82 1.3829
.33 .0192 .83 1.3906
.34 1.0262 -84 1.3986
.35 1.0333 .85 1.4063
.36 1.0404 .86 1.4142
.37 1.0474 .87 1.4221
.38 1.0545 .88 1.4298
.39 1.0616 .89 1.4378

.40 1.0687 .90 1.4457

.4.1 1.0760 .91 1.4535

.42 1.0831 .92 1.4613
•43 1.0903 .93 1.4693
.4 1.0975 .94 1.4773
.45 1.1047 .95 1.4852
.46 1.1120 .96 1.4932
.47 1.1193 .97 1.5013
.48 1.1265 .98 1.5092
.49 1.1338 .99 1.5170
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x x(x)

1.01 1.5330 1.51 1.9-470
1.02 1.%413 1.52 1.9554
1.03 1.5492 1.53 1.9643

• 1.04 1.5574 1.5,4 1.9728
1.05 1.5652 L.55 1.9814
1.06 1.5733 1.56 1.9904
1.07 1.5815 1.57 1.9984
1.08 1.5896 1.58 2.o068
1.09 1.5977 1.59 2.0153

1.10 1.6057 1.60 2.0243
1.1 1.6139 1.61 2.0325
1.12 1.6221 1.62 2.0412
1.13 1.6303 1.63 2.0500
1.14 1.6385 1.64 2.0585
1.15 1.6466 1.65 2.0670
1.16 1.648 1.66 2.0756
1.17 1.6628 1.67 2.0846
1.18 1.6711 1.68 2.0929
1.19 1.6793 1.69 2.1022

1.20 1.6875 ;.70 2.1102
1.21 1.6958 1.71 2.1191
1.22 1.7042 1.72 2.1277
1.23 1.7123 1.73 2.1358
1.24 2.7206 1.74 2.1450
1.25 1.7289 1.75 2.1538
1.26 1.7370 1.76 2.1626
1.27 1.7455 1.77 2.171.1
1.28 1.7538 1.78 2.1796
1.29 1.7618 1.79 2.1882

1.30 1.7702 1.80 2.1973
1.31 1.7787 1.81 2.2060
1.32 1. 78M 1.82 2.M28
1.33 1.7953 1.83 2.2242
1.34 1.8038 1.84 2.2326
1.35 1.8119 1.85 2.2406
1.36 1.8205 1.86 2.2502
1.37 1.8288 1.87 2.2589
1.38 1.8372 1.88 2.2676
1.39 1.8457 1.89 2.2758

1.40 1.8539 1.90 2.2847
1.41 1.8625 1.91 2.2941
1.42 1.8709 1.92 2.3026
1.43 1.8793 1.93 2.3116
1.44 1.89 1.94 2.3202
1.45 1.8961 1.95 2.3288
1.46 1.9051 1.96 2.3375
1.47 1.9131 1.97 2.3463
1.48 1.9216 1.98 2.3557
1.49 1.9301 1.99 2.3641

IZ
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S ox) x 0(.)
g.00 2.3730 2.50 2.8233
2.01 2.3825 A.51 2.8297 o
2.02 2.3912 2.52 2.40
2.03 2.3992 2.53 2.85%
2.04 2.4m 2.54 2.8612
2.05 2.417 2.55 2.8662
2.o6 2.4266 2.56 2.879,
2.07 2.4349 2.57 2.9W2
2.08 2.444* 2.58 2.8969
2.09 2.4528 2.59 2.9044

2.10 2."6.4 2.60 2.9138
2.11 2.4710 2.61 2.9206
2.12 2.408 2.62 2.9300
2.13 2.4882 2.63 2.9412
2.14 2.4975 2.64 2.9472
2.15 2.5063 2.65 2.9630
2.16 2.5151 2.66 2.9665
2.17 2.5253 2.67 2.9815
2.18 2.5329 2.68 2.9895
2.19 2.5426 2.69 3.0003

2.20 2.5517 2.70 3.0030
2.21 2.560S 2.71 3.0175
2.22 2.56904 2.72 3.0276
2.23 2.5786 2.73 3.0312
2.2/ 2.5867 2.74 3.0460
2.23 2. "'. 2.75 3.0506
2.26 2. 6055 2.76 3.0618
2.27 2.6157 2.77 3.0750
2.28 2.624o 2.78 3.0769
2.29 2.6323 2.79 3.0836

2.30 2.6427 2.80 3.0941
2.31 2.6511 2.81 3.1046
2.32 2.6596 2.82 3.U62
2.33 2.6695 2.83 3.1201
2.34 2.6781 2.84 3.1279
2.35 2.6860 2.85 3.1366
2.36 2.6947 2.86 3.1506
2.37 2.7064 2.87 3.1656
2.36 2.722 2.88 3.1706
2.39 2.7248 2.89 3.1766

2.40 2.7307 2.90 3.1817
2.41 2.7390 2.91 3.1939
2.42 2.7503 2.92 3.2113
2.43 2.7586 2.93 3.224
2." 2.7701 2.94 3.2321
2.45 2.'786 2.95 3.2331
2.46 2.7855 2.96 3.2404
2.47 2.941 2.97 3.2552
2.48 2.8035 2.98 3.2712
2.49 2.8121 2. 3.2873

3.00 3.2819
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